Tangents and Normals

Equation of a Tangent Line

The derivative at a point $x=\mathrm{a}$, denoted $f^{\prime}(a)$, is the instantaneous rate of change at that point. Geometrically, $\boldsymbol{f}^{\prime}(\boldsymbol{a})$ gives us the slope of the tangent line at the point $\mathbf{x}=\mathbf{a}$.

Recall: A tangent line is a line that "just touches" a curve at a specific point without intersecting it.

To find the equation of the tangent line we need its slope and a point on the line. Given the function $f(x)$ and the point $(a, f(a))$ we can find the equation of the tangent line using the slope equation.

$$
\mathbf{m}=\frac{f(x)-f(a)}{x-a}
$$

Since $\boldsymbol{f}^{\prime}(\boldsymbol{a})$ gives us the slope of the tangent line at the point $\mathbf{x}=\mathbf{a}$, we have

$$
\mathbf{f}^{\prime}(\mathbf{a})=\frac{f(x)-f(a)}{x-a}
$$

As such, the equation of the tangent line at $x=a$ can be expressed as:

$$
f(x)-f(a)=\mathbf{f}^{\prime}(\mathbf{a})(x-a)
$$

Equation of a Normal Line

The normal line is defined as the line that is perpendicular to the tangent line at the point of tangency. Knowing this, we can find the equation of the normal line at $x=a$ by

Tangents and Normals

taking the negative inverse of the slope of the tangent line equation.
Thus, if $\boldsymbol{f}^{\prime}(\boldsymbol{a})$ is the slope of the tangent line at $\mathrm{x}=\mathrm{a}$. The negative inverse is $\frac{-\mathbf{1}}{\mathbf{f}^{\prime}(\mathbf{a})}$.

As such, the equation of the normal line at $x=a$ can be expressed as:

$$
f(x)-f(a)=\frac{-\mathbf{1}}{\mathbf{f}^{\prime}(\mathbf{a})}(x-a)
$$

Example 1: Find the equation of the tangent and normal lines of the function $f(x)=$ $\sqrt{2 x-1}$ at the point $(5,3)$.

Solution:

a) Equation of the Tangent Line.

Step 1: Find the slope of the function by solving for its first derivative.	$f(x)=\sqrt{2 x-1}$
	$f(x)=(2 x-1)^{\frac{1}{2}}$
$f^{\prime}(x)=\frac{1}{2}(2 x-1)^{\frac{-1}{2}}(2)$	
$f^{\prime}(x)=\frac{1}{\sqrt{2 x-1}}$	

Tangents and Normals

Step 2: Knowing $f^{\prime}(a)$, solve for the slope of the tangent at $a=5$.	$f^{\prime}(5)=\frac{1}{\sqrt{2(5)-1}}$
	$f^{\prime}(5)=\frac{1}{3}$

b) Equation of the Normal Line.

Step 1: Find the slope of the normal line $\frac{-1}{\mathbf{f}^{\prime}(\mathbf{a})}$.
Step 2: Given the equation of a tangent line, swap slopes.

Since $f^{\prime}(5)=\frac{1}{3}$, then $\frac{-\mathbf{1}}{\mathbf{f}^{\prime}(\mathbf{a})}=-\mathbf{3}$

$$
\begin{aligned}
f(x)-f(a) & =\frac{-\mathbf{1}}{\mathbf{f}^{\prime}(\mathbf{a})}(x-a) \\
f(x)-3 & =-3(x-5)
\end{aligned}
$$

Example 2: Find the equation of the tangent and normal lines of the function $f(x)=$ $\left(x^{2}-1\right)^{3}$ at the point $(2,27)$.

Solution:

a) Equation of the Tangent Line.

Step 1: Find the slope of the function by solving for its first derivative.	$f(x)=\left(x^{2}-1\right)^{3}$ $f^{\prime}(x)=3\left(x^{2}-1\right)^{2}(2 x)$ $f^{\prime}(x)=6 x\left(x^{2}-1\right)^{2}$				
Step 2: Knowing $f^{\prime}(a)$, solve for the slope of the tangent at $a=2$.	$f^{\prime}(2)=6(2)\left((2)^{2}-1\right)^{2}$				
$f^{\prime}(2)=108$		$	$		$f(2)=\left((2)^{2}-1\right)^{3}$
:---	:---:				
Step 3: Solve for $f(a)$.	$f(2)=27$				
Step 4: Substitute found values into the equation of a tangent line.	$f(x)-f(a)=f^{\prime}(a)(x-a)=108(x-2)$				

Tangents and Normals

b) Equation of the Normal Line.

Step 1: Find the slope of the normal line $\frac{-\mathbf{1}}{\mathbf{f}^{\prime}(\mathbf{a})^{\cdot}}$	Since $f^{\prime}(2)=108$, then $\frac{\mathbf{- 1}}{\mathbf{f}^{\prime}(\mathbf{a})}=-\frac{\mathbf{1}}{\mathbf{1 0 8}}$
Step 2: Given the equation of a tangent line, swap slopes.	$f(x)-f(a)=\frac{-\mathbf{1}}{\mathbf{f}^{\prime}(\mathbf{a})}(x-a)$
	$f(x)-27=-\frac{\mathbf{1}}{\mathbf{1 0 8}}(x-2)$

Exercises:

1. Find the equation for the normal and tangent lines for $f(x)$ at the specified points.
a) $f(x)=e^{x}$ at $(0,1)$
b) $f(x)=2 x^{3}-3 x+7$ at $(1,6)$
c) $f(x)=\frac{1}{x^{2}}$ at $(-1,1)$
d) $\mathrm{f}(\mathrm{x})=x \cos (x)$ at $(0,0)$
e) $\mathrm{f}(\mathrm{x})=x e^{x}$ at $(0,0)$

Solutions:

1. a) Tangent: $y-1=x$, Normal: $y-1=-x$
b) Tangent: $y-6=3(x-1)$, Normal: $y-6=-\frac{1}{3}(x-1)$
c) Tangent: $y-1=2(x+1)$, Normal: $y-1=-\frac{1}{2}(x+1)$
d) Tangent: $y=x$, Normal: $y=-x$
e) Tangent: $y=x$, Normal: $y=-x$
