

Part A: Explicit versus Implicit Functions

At this point, we have derived many functions, y, written **EXPLICITLY** as functions of x.

What are explicit functions?

Given the function,

$$\mathbf{y}=\mathbf{3x}+\mathbf{1},$$

the value of y is dependent on the value of x (the independent variable). For every x value, we can easily find its corresponding y value by substituting and simplifying.

See Figure 1: y = 3x + 1 below.

If
$$x = -1$$
, then $y = 3x + 1$
= 3(-1) + 1
= -2

Thus, our point on the graph is (-1, -2).

If
$$x = 0$$
, then $y = 3x + 1$
= 3(0) + 1
= 1

Thus, our point on the graph is (0, 1).

However, some functions, y, are written **IMPLICITLY** as functions of x. In other words, the function is written in terms of x and y. In these cases, we have to do some work to find the corresponding y value for each given x.

An example of an *implicit function* includes,

See Figure 2: $x^2 + y^2 = 1$ below.

Tutoring and Learning Centre, George Brown College

 $x^2 + y^2 = 1.$

If
$$x = \frac{1}{2}$$
, then $x^2 + y^2 = 1$
 $(\frac{1}{2})^2 + y^2 = 1$
 $y^2 = 1 - (\frac{1}{2})^2$
 $y = \pm \sqrt{1 - (\frac{1}{2})^2}$
 $y = \pm \sqrt{1 - \frac{1}{4}}$
 $y = \pm \frac{\sqrt{3}}{2}$

2014 www.georgebrown.ca/tlc

Thus, with a little bit of algebraic manipulation we find our points, $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$.

Part B: Explicit Differentiation

Since explicit functions are given in terms of x, deriving with respect to x simply involves abiding by the rules for differentiation.

Example 1: Given the function, $y = 6x^2 + \frac{1}{2}(x^2 - 3)^4$, find y'or equivalently $\frac{dy}{dx}$.

Step 1: Multiple both sides of the function by $\frac{d}{dx}$.	$\frac{d}{dx}(y) = \frac{d}{dx}(6x^2 + \frac{1}{2}(x^2 - 3)^4)$ $\frac{dy}{dx} = (6x^2)\frac{d}{dx} + \left(\frac{1}{2}(x^2 - 3)^4\right)\frac{d}{dx}$
Step 2: Differentiate both sides of the function with respect to x using the power and chain rule.	$\frac{dy}{dx} = (12x) + (4x(x^2 - 3)^3)$

Part C: Implicit Differentiation

Method 1 – Step by Step using the Chain Rule

Since implicit functions are given in terms of x and y, deriving with respect to x involves the application of the chain rule.

Example 2: Given the function, $\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{1}$, find y'or equivalently $\frac{dy}{dx}$.

Step 1: Multiple both sides of the function $bx = d^{d}$	$\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(1)$
$by \frac{dx}{dx}$.	$(x^2)\frac{d}{dx} + (y^2)\frac{d}{dx} = (1)\frac{d}{dx}$
Step 2: Differentiate $(x^2)\frac{d}{dx}$ and $(1)\frac{d}{dx}$ with respect to <i>x</i> .	$2x + (y^2)\frac{d}{dx} = 0$
Step 3: NOTE: We cannot differentiate $(y^2) \frac{d}{dx}$ with respect to <i>x</i> as above, since it	$2x + (y^2)\frac{d}{dx} = 0$

is written in terms of y.	
Step 4: Perform the chain rule on $(y^2)\frac{d}{dx}$ by 1. Differentiating y^2 with respect to y and 2. Multiplying the result by $\frac{dy}{dx}$ Remember, our goal is to solve for $\frac{dy}{dx}$.	$\frac{d(y^2)}{dx} = \frac{d(y^2)}{dy}\frac{dy}{dx}$ $= 2y\frac{dy}{dx}$
Step 5: Let $\frac{d(y^2)}{dx} = 2y \frac{dy}{dx}$, and solve for $\frac{dy}{dx}$.	$2x + (y^{2})\frac{d}{dx} = 0$ $2x + 2y\frac{dy}{dx} = 0$ $2y\frac{dy}{dx} = -2x$ $\frac{dy}{dx} = \frac{-2x}{2y}$ $\frac{dy}{dx} = \frac{-x}{y}$

Example 3: Given the function, $xy^3 + 4x^2 - 3x = 5$, find y'or equivalently $\frac{dy}{dx}$.

Step 1: Multiple both sides of the function by $\frac{d}{dx}$.	$\frac{d}{dx}(xy^3 + 4x^2 - 3x) = \frac{d}{dx}(5)$ $(xy^3)\frac{d}{dx} + (4x^2)\frac{d}{dx} - (3x)\frac{d}{dx} = (5)\frac{d}{dx}$
Step 2: Differentiate $(4x^2)\frac{d}{dx}, (3x)\frac{d}{dx}, and (5)\frac{d}{dx}$ with respect to <i>x</i> .	$(xy^3)\frac{d}{dx} + 8x - 3 = 0$
Step 3: NOTE: We cannot differentiate $(xy^3)\frac{d}{dx}$ with respect to <i>x</i> alone, since <i>y</i> is in the term.	$(xy^3)\frac{d}{dx} + 8x - 3 = 0$

Step 4: Perform the product rule between the functions x and y^3 with respect to x .	$\frac{d(xy^3)}{dx} = \left((x)\frac{d}{dx} \right) (y^3) + \left((y^3)\frac{d}{dx} \right) x$
Step 5: Where possible, derive with respect to x .	$= (1)(y^3) + x \left((y^3) \frac{d}{dx} \right)$
 Step 6: Apply the chain rule to (y³) d/dx by 1. Differentiating y³ with respect to y and 2. Multiplying the result by dy/dx Remember, our goal is to solve for dy/dx. 	$\left(\frac{d(y^3)}{dx}\right) = \frac{d(y^3)}{dy}\frac{dy}{dx}$ $= 3y^2 \frac{dy}{dx}$
Step 7: Sub in our found values into $(xy^3)\frac{d}{dx} + 8x - 3 = 0$, and solve for $\frac{dy}{dx}$.	$[(\mathbf{x}\mathbf{y}^3)\frac{\mathbf{d}}{\mathbf{d}\mathbf{x}}] + 8x - 3 = 0$ $[(1)(\mathbf{y}^3) + \mathbf{x}\left((\mathbf{y}^3)\frac{\mathbf{d}}{\mathbf{d}\mathbf{x}}\right)] + 8x - 3 = 0$ $(y^3) + \mathbf{x}\left(3\mathbf{y}^2\frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{x}}\right) + 8x - 3 = 0$ $y^3 + 3y^2x\frac{dy}{dx} + 8x - 3 = 0$ $\frac{dy}{dx} = \frac{-8x + 3 - y^3}{3y^2x}$

Method 2 – Chain Rule Short Cut

Once you have a good idea of how the chain rule works, you may begin to skip steps. In this method it is as though we are differentiating with respect to x and y at the same time with an added step. Every time you differentiate with respect to y, the term must be multiplied by a factor of $\frac{dy}{dx}$.

Example 4: Given the function, $4x^2 + \sin(xy^4) = 3y$, find y'or equivalently $\frac{dy}{dx}$.

Step 1: Differentiate both sides of the function with respect to x and y . Remember to multiply derivatives of y	$8x + \cos(xy^4) \left(1(y^4) + 4y^3x \frac{dy}{dx}\right) = 3\frac{dy}{dx}$
--	--

by a factor of $\frac{dy}{dx}$.	
Step 2: Expand.	$8x + \cos(xy^{4})(1(y^{4}) + 4y^{3}x\frac{dy}{dx}) = 3\frac{dy}{dx}$ $8x + y^{4}\cos(xy^{4}) + 4y^{3}x\cos(xy^{4})\frac{dy}{dx} = 3\frac{dy}{dx}$
Step 3 : Collect and factor out $\frac{dy}{dx}$.	$\frac{4y^{3}x\cos(xy^{4})\frac{dy}{dx} - 3\frac{dy}{dx}}{\frac{dy}{dx}(4y^{3}x\cos(xy^{4}) - 3)} = -8x - y^{4}\cos(xy^{4})$
Step 4: Solve for $\frac{dy}{dx}$.	$\frac{dy}{dx} = \frac{-8x - y^4 \cos(xy^4)}{4y^3 x \cos(xy^4) - 3}$

Example 5: Given the function, $xe^{x^2+y^2} = 5$, find y'or equivalently $\frac{dy}{dx}$.

Step 1: Apply the product rule between the functions <i>x</i> and $e^{x^2 + y^2}$.	$(x)\frac{d}{dx}e^{x^{2}+y^{2}} + (e^{x^{2}+y^{2}})\frac{d}{dx}x = 5\frac{d}{dx}$
Step 2: Differentiate both sides of the function with respect to <i>x</i> and <i>y</i> at the same time. Remember to multiply derivatives of <i>y</i> by a factor of $\frac{dy}{dx}$.	$(1)e^{x^{2}+y^{2}} + (e^{x^{2}+y^{2}})(2x+2y\frac{dy}{dx})x = 0$ $e^{x^{2}+y^{2}} + (e^{x^{2}+y^{2}})(2x^{2}+2yx\frac{dy}{dx}) = 0$
Step 3: Expand.	$e^{x^{2}+y^{2}} + (e^{x^{2}+y^{2}})(2x^{2}+2yx\frac{dy}{dx}) = 0$ $e^{x^{2}+y^{2}} + 2x^{2}e^{x^{2}+y^{2}} + 2yxe^{x^{2}+y^{2}}\frac{dy}{dx} = 0$
Step 4 : Factor out $e^{x^2 + y^2}$ from the left hand side.	$e^{x^2 + y^2}(1 + 2x^2) = -2yxe^{x^2 + y^2}\frac{dy}{dx}$
Step 5: Solve for $\frac{dy}{dx}$.	$\frac{dy}{dx} = \frac{\mathbf{e}^{\mathbf{x}^2 + \mathbf{y}^2}(1 + 2x^2)}{-2yx\mathbf{e}^{\mathbf{x}^2 + \mathbf{y}^2}}$

$dy - 1 - 2x^2$
$\frac{1}{dx} - \frac{1}{2yx}$

Exercises:

1. $x^3 + y^3 = 4$ 2. $(x - y^2)^2 = 5x$ 3. $y = x^2y + y^2x$ 4. $cos(xy) + x^2 = -7y$ 5. y = sin(2x + 3y)6. $e^{xy} = e^{cosy}$ 7. $y - \ln y = 10x^3 -$ 8. tan y = cos x9. $y - \sqrt{y} = \ln x$

Solutions:

 $6x^2 + 4$

1. $\frac{dy}{dx} = -\frac{x^2}{y^2}$ 2. $\frac{dy}{dx} = \frac{5-2x+2y^2}{-4xy+4y^3}$ 3. $\frac{dy}{dx} = \frac{2xy+y^2}{1-x^2-2yx}$ 4. $\frac{dy}{dx} = \frac{ysin(xy)-2x}{7-xsin(xy)}$ 5. $\frac{dy}{dx} = \frac{2cos(2x+3y)}{1-3cos(2x+2y)}$ 6. $\frac{dy}{dx} = \frac{-ye^{xy}}{xe^{xy}+sinye^{cosy}}$ 7. $\frac{dy}{dx} = \frac{30x^2y-12xy}{y-1}$ 8. $\frac{dy}{dx} = -sinxcos^2y$ 9. $\frac{dy}{dx} = \frac{2\sqrt{y}}{2x\sqrt{y-x}}$