Part A: Explicit versus Implicit Functions

At this point, we have derived many functions, \mathbf{y}, written EXPLICITLY as functions of x.

What are explicit functions?

Given the function,

$$
y=3 x+1
$$

the value of \mathbf{y} is dependent on the value of \boldsymbol{x} (the independent variable). For every \mathbf{x} value, we can easily find its corresponding y value by substituting and simplifying.

See Figure 1: $y=3 x+1$ below.

$$
\text { If } \begin{aligned}
x=-\mathbf{1}, \text { then } & \mathbf{y}=\mathbf{3 x}+\mathbf{1} \\
& =3(-\mathbf{1})+1 \\
& =-2
\end{aligned}
$$

Thus, our point on the graph is $(-1,-2)$.
If $\boldsymbol{x}=\mathbf{0}$, then $\mathbf{y}=\mathbf{3 x}+\mathbf{1}$

$$
\begin{aligned}
& =3(\mathbf{0})+1 \\
& =1
\end{aligned}
$$

Thus, our point on the graph is $(0,1)$.

However, some functions, \mathbf{y}, are written IMPLICITLY as functions of x. In other words, the function is written in terms of \mathbf{x} and \mathbf{y}. In these cases, we have to do some work to find the corresponding \mathbf{y} value for each given \mathbf{x}.

An example of an implicit function includes,

$$
x^{2}+y^{2}=1
$$

See Figure 2: $\mathbf{x}^{\mathbf{2}}+\mathbf{y}^{\mathbf{2}}=1$ below.

$$
\begin{aligned}
& \text { If } x=\frac{1}{2} \text {, then } x^{2}+y^{2}=\mathbf{1} \\
& \qquad \begin{array}{c}
\left(\frac{1}{2}\right)^{2}+y^{2}=1 \\
y^{2}=1-\left(\frac{1}{2}\right)^{2} \\
y= \pm \sqrt{1-\left(\frac{1}{2}\right)^{2}} \\
y= \pm \sqrt{1-\frac{1}{4}} \\
y= \pm \frac{\sqrt{3}}{2}
\end{array}
\end{aligned}
$$

Thus, with a little bit of algebraic manipulation we find our points, $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$.

Part B: Explicit Differentiation

Since explicit functions are given in terms of x, deriving with respect to x simply involves abiding by the rules for differentiation.

Example 1: Given the function, $y=6 x^{2}+\frac{1}{2}\left(x^{2}-3\right)^{4}$, find y^{\prime} or equivalently $\frac{d y}{d x}$.

Step 1: Multiple both sides of the function by $\frac{d}{d x}$	$\frac{\boldsymbol{d}}{\boldsymbol{d} \boldsymbol{x}}(y)=\frac{\boldsymbol{d}}{\boldsymbol{d x}}\left(6 x^{2}+\frac{1}{2}\left(x^{2}-3\right)^{4}\right)$ $\frac{d y}{d x}=\left(6 \boldsymbol{x}^{2}\right) \frac{d}{d x}+\left(\frac{\mathbf{1}}{\mathbf{2}}\left(\boldsymbol{x}^{2}-\mathbf{3}\right)^{4}\right) \frac{d}{d x}$ Step 2: Differentiate both sides of the function with respect to x using the power and chain rule.$\quad \frac{d y}{d x}=(\mathbf{1 2 x})+\left(\mathbf{4 x}\left(\boldsymbol{x}^{2}-\mathbf{3}\right)^{\mathbf{3}}\right)$

Part C: Implicit Differentiation

Method 1 - Step by Step using the Chain Rule

Since implicit functions are given in terms of x and y, deriving with respect to x involves the application of the chain rule.

Example 2: Given the function, $\mathbf{x}^{2}+\mathbf{y}^{2}=\mathbf{1}$, find y^{\prime} or equivalently $\frac{d y}{d x}$.

Step 1: Multiple both sides of the function by $\frac{d}{d x}$.	$\frac{d}{d x}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=\frac{d}{d x}(1)$ $\left(\mathrm{x}^{2}\right) \frac{d}{d x}+\left(\mathrm{y}^{2}\right) \frac{d}{d x}=(1) \frac{d}{d x}$
Step 2: Differentiate $\left(\mathrm{x}^{2}\right) \frac{d}{d x}$ and (1) $\frac{d}{d x}$ with respect to x.	$2 \mathrm{x}+\left(\mathrm{y}^{2}\right) \frac{d}{d x}=0$
Step 3: NOTE: We cannot differentiate $\left(\mathrm{y}^{2}\right) \frac{d}{d x}$ with respect to x as above, since it	$2 \mathrm{x}+5\left(\mathrm{y}^{2}\right) \frac{d}{d x}$

is written in terms of \boldsymbol{y}.	
Step 4: Perform the chain rule on $\left(\mathrm{y}^{2}\right) \frac{d}{d x}$ by 1. Differentiating y^{2} with respect to y and 2. Multiplying the result by $\frac{d y}{d x}$ Remember, our goal is to solve for $\frac{d y}{d x}$.	$\begin{aligned} \frac{d\left(\mathrm{y}^{2}\right)}{d x} & =\frac{d\left(\mathrm{y}^{2}\right)}{d y} \frac{d y}{d x} \\ & =2 \boldsymbol{y} \frac{d y}{d x} \end{aligned}$
Step 5: Let $\frac{d\left(\mathrm{y}^{2}\right)}{d x}=2 y \frac{d y}{d x}$, and solve for $\frac{d y}{d x}$.	$\begin{gathered} 2 \mathrm{x}+\left(\mathrm{y}^{2}\right) \frac{\boldsymbol{d}}{\boldsymbol{d} \boldsymbol{x}}=0 \\ 2 \mathrm{x}+\mathbf{2 y} \frac{d y}{d x}=0 \\ \mathbf{2 y} \frac{d y}{d x}=-2 x \\ \frac{d y}{d x}=\frac{-2 x}{2 y} \\ \frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}=\frac{-x}{y} \end{gathered}$

Example 3: Given the function, $\boldsymbol{x} \boldsymbol{y}^{3}+4 x^{2}-3 x=5$, find y^{\prime} or equivalently $\frac{d y}{d x}$.

Step 1: Multiple both sides of the function by $\frac{d}{d x}$.

$$
\begin{gathered}
\frac{\boldsymbol{d}}{\boldsymbol{d} \boldsymbol{x}}\left(x y^{3}+4 x^{2}-3 x\right)=\frac{\boldsymbol{d}}{\boldsymbol{d} \boldsymbol{x}}(5) \\
\left(x y^{3}\right) \frac{\boldsymbol{d}}{\boldsymbol{d} \boldsymbol{x}}+\left(4 x^{2}\right) \frac{\boldsymbol{d}}{\boldsymbol{d x}}-(3 x) \frac{\boldsymbol{d}}{\boldsymbol{d x}}=(5) \frac{\boldsymbol{d}}{\boldsymbol{d x}}
\end{gathered}
$$

Step 2: Differentiate
$\left(4 x^{2}\right) \frac{d}{d x},(3 x) \frac{d}{d x}$, and (5) $\frac{d}{d x}$ with respect to x.

Step 3: NOTE: We cannot differentiate $\left(\mathrm{xy}^{3}\right) \frac{d}{d x}$ with respect to x alone, since y is in the term.

Step 4: Perform the product rule between the functions x and y^{3} with respect to x .	$\frac{d(\mathrm{xy})^{3}}{d x}=\left((x) \frac{d}{d x}\right)\left(y^{3}\right)+\left(\left(y^{3}\right) \frac{d}{d x}\right) x$
Step 5: Where possible, derive with respect to x.	$=(1)\left(y^{3}\right)+x\left(\left(y^{3}\right) \frac{d}{d x}\right)$
Step 6: Apply the chain rule to $\left(\boldsymbol{y}^{3}\right) \frac{d}{d x}$ by 1. Differentiating y^{3} with respect to y and 2. Multiplying the result by $\frac{d y}{d x}$ Remember, our goal is to solve for $\frac{d y}{d x}$.	$\begin{aligned} \left(\frac{d\left(y^{3}\right)}{d x}\right) & =\frac{d\left(y^{3}\right)}{d y} \frac{d y}{d x} \\ & =3 y^{2} \frac{d y}{d x} \end{aligned}$
Step 7: Sub in our found values into $\left(x y^{3}\right) \frac{d}{d x}+8 x-3=0$, and solve for $\frac{d y}{d x}$.	$\begin{gathered} {\left[\left(\mathbf{x y}^{3}\right) \frac{\mathbf{d}}{\mathbf{d x}}\right]+8 x-3=0} \\ {\left[(\mathbf{1})\left(\boldsymbol{y}^{3}\right)+x\left(\left(\mathbf{y}^{3}\right) \frac{\mathbf{d}}{\mathbf{d x}}\right)\right]+8 x-3=0} \\ \left(y^{3}\right)+x\left(3 \mathbf{y}^{2} \frac{\mathbf{d y}}{\mathbf{d x}}\right)+8 x-3=0 \\ y^{3}+3 y^{2} x \frac{d y}{d x}+8 x-3=0 \\ \frac{d y}{d x}=\frac{-8 x+3-y^{3}}{3 y^{2} x} \end{gathered}$

Method 2 - Chain Rule Short Cut

Once you have a good idea of how the chain rule works, you may begin to skip steps. In this method it is as though we are differentiating with respect to x and y at the same time with an added step. Every time you differentiate with respect to \boldsymbol{y}, the term must be multiplied by a factor of $\frac{d y}{d x}$.

Example 4: Given the function, $4 x^{2}+\sin \left(x y^{4}\right)=3 y$, find y^{\prime} or equivalently $\frac{d y}{d x}$.
Step 1: Differentiate both sides of the function with respect to \boldsymbol{x} and \boldsymbol{y}.

$$
8 x+\cos \left(x y^{4}\right)\left(1\left(y^{4}\right)+4 y^{3} x \frac{d y}{d x}\right)=3 \frac{d y}{d x}
$$

by a factor of $\frac{d y}{d x}$.	
Step 2: Expand.	$8 x+\cos \left(x y^{4}\right)\left(1\left(y^{4}\right)+4 y^{3} x \frac{d y}{d x}\right)=3 \frac{d y}{d x}$
	$8 x+y^{4} \cos \left(x y^{4}\right)+4 y^{3} x \cos \left(x y^{4}\right) \frac{d y}{d x}=3 \frac{d y}{d x}$
Step 3: Collect and factor out $\frac{d y}{d x}$.	$4 y^{3} x \cos \left(x y^{4}\right) \frac{\mathrm{dy}}{\mathrm{dx}}-3 \frac{\mathrm{dy}}{\mathrm{dx}}$
	$\frac{\mathrm{dy}}{\mathrm{dx}}\left(4 y^{3} x \cos \left(x y^{4}\right)-3\right)=-8 x-y^{4} \cos \left(x y^{4}\right)$
Step 4: Solve for $\frac{d y}{d x}$.	$\frac{d y}{d x}=\frac{-8 x-y^{4} \cos \left(x y^{4}\right)}{4 y^{3} x \cos \left(x y^{4}\right)-3}$

Example 5: Given the function, $x e^{x^{2}+y^{2}}=5$, find y^{\prime} or equivalently $\frac{d y}{d x}$.

Step 1: Apply the product rule between the functions x and $e^{x^{2}+y^{2}}$.	$\text { (x) } \frac{d}{d x} e^{x^{2}+y^{2}}+\left(e^{x^{2}+y^{2}}\right) \frac{d}{d x} x=5 \frac{d}{d x}$
Step 2: Differentiate both sides of the function with respect to x and y at the same time. Remember to multiply derivatives of \boldsymbol{y} by a factor of $\frac{d y}{d x}$.	$\begin{aligned} & \text { (1) } e^{x^{2}+y^{2}}+\left(e^{x^{2}+y^{2}}\right)\left(2 x+2 y \frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} x}\right) x=0 \\ & e^{x^{2}+y^{2}}+\left(e^{x^{2}+y^{2}}\right)\left(2 x^{2}+2 y x \frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} x}\right)=0 \end{aligned}$
Step 3: Expand.	$\begin{gathered} e^{x^{2}+y^{2}}+\left(e^{x^{2}+y^{2}}\right)\left(2 x^{2}+2 y x \frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}\right)=0 \\ e^{x^{2}+y^{2}}+2 x^{2} e^{x^{2}+y^{2}}+2 y x e^{x^{2}+y^{2}} \frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}=0 \end{gathered}$
Step 4: Factor out $e^{x^{2}+y^{2}}$ from the left hand side.	$e^{x^{2}+y^{2}}\left(1+2 x^{2}\right)=-2 y x e^{x^{2}+y^{2}} \frac{\boldsymbol{d y}}{\boldsymbol{d} x}$
Step 5: Solve for $\frac{d y}{d x}$.	$\frac{d y}{d x}=\frac{\mathbf{e}^{\mathbf{x}^{2}+\mathbf{y}^{2}}\left(1+2 x^{2}\right)}{-2 y x \mathbf{e}^{\mathbf{x}^{2}+\mathbf{y}^{2}}}$

	$\frac{d y}{d x}=\frac{-1-2 x^{2}}{2 y x}$

Exercises:

1. $x^{3}+y^{3}=4$
2. $\cos (x y)+x^{2}=-7 y$
3. $y-\ln y=10 x^{3}-$ $6 x^{2}+4$
4. $\left(x-y^{2}\right)^{2}=5 x \quad$ 3. $y=x^{2} y+y^{2} x$
5. $y=\sin (2 x+3 y)$
6. $e^{x y}=e^{\cos y}$
7. $\tan y=\cos x$
8. $y-\sqrt{y}=\ln x$

Solutions:

1. $\frac{d y}{d x}=-\frac{x^{2}}{y^{2}}$
2. $\frac{d y}{d x}=\frac{y \sin (x y)-2 x}{7-x \sin (x y)}$
3. $\frac{d y}{d x}=\frac{30 x^{2} y-12 x y}{y-1}$
4. $\frac{d y}{d x}=\frac{5-2 x+2 y^{2}}{-4 x y+4 y^{3}}$
5. $\frac{d y}{d x}=\frac{2 x y+y^{2}}{1-x^{2}-2 y x}$
6. $\frac{d y}{d x}=\frac{2 \cos (2 x+3 y)}{1-3 \cos (2 x+2 y)}$
7. $\frac{d y}{d x}=\frac{-y e^{x y}}{x e^{x y}+\text { sinyecosy }}$
8. $\frac{d y}{d x}=-\sin x \cos ^{2} y$
9. $\frac{d y}{d x}=\frac{2 \sqrt{y}}{2 x \sqrt{y}-x}$
