# Formula Sheet for Financial Mathematics



# SIMPLE INTEREST

## l = P*r*t

- I is the amount of interest earned
- P is the principal sum of money earning the interest
- r is the simple annual (or nominal) interest rate (usually expressed as a percentage)
- t is the interest period in years

# S = P + I

S = P (1 + rt)

- S is the future value (or maturity value). It is equal to the principal plus the interest earned.

# COMPOUND INTEREST

$$FV = PV (1 + i)^n$$

 $i = \frac{j}{m}$ 

j = nominal annual rate of interest

$$\label{eq:metric} \begin{split} m &= number \mbox{ of compounding periods } \\ i &= periodic \mbox{ rate of interest } \end{split}$$

$$PV = FV (1 + i)^{-n}$$
 OR  $PV$ 

$$l = \frac{rv}{(1+i)r}$$

EV

# ANNUITIES

| Classifying rationale                                            | Type of annuity                                                                                                                                                                                                |                                                                                                                                                                                                                         |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Length of conversion period<br>relative to the payment<br>period | <b>Simple annuity</b> - when the interest compounding period is the same as the payment period $(C/Y = P/Y)$ . For example, a car loan for which interest is compounded monthly and payments are made monthly. | <b>General annuity</b> - when the interest compounding period does NOT equal the payment period (C/Y $\neq$ P/Y). For example, a mortgage for which interest is compounded semi-annually but payments are made monthly. |
| Date of payment                                                  | <b>Ordinary annuity</b> – payments<br>are made at the END of each<br>payment period. For example,<br>OSAP loan payment.                                                                                        | Annuity due - payments are<br>made at the BEGINNING of<br>each payment period. For<br>example, lease rental<br>payments on real estate.                                                                                 |
| Payment schedule                                                 | <b>Deferred annuity</b> – first<br>payment is delayed for a period<br>of time.                                                                                                                                 | Perpetuity – an annuity for<br>which payments continue<br>forever. (Note: payment<br>amount ≤ periodic interest<br>earned)                                                                                              |

| Beginning date and end | Annuity certain – an annuity    | Contingent annuity - the   |
|------------------------|---------------------------------|----------------------------|
| date                   | with a fixed term; both the     | beginning date, the ending |
|                        | beginning date and end date are | date, or both are unknown. |
|                        | known. For example, installment | For example, pension       |
|                        | payments on a loan.             | payments.                  |

## **ORDINARY SIMPLE annuity**

$$\mathbf{FV}_{n} = \mathbf{PMT}\left[\frac{(1+i)^{n}-1}{i}\right]$$

Note:  $\left[\frac{(1+i)^n-1}{i}\right]$  is called the **compounding** or **accumulation factor for annuities** (or the accumulated value of one dollar per period).

 $\mathsf{PV}_{\mathsf{n}} = \mathsf{PMT}\left[\frac{1-(1+i)^{-\mathsf{n}}}{i}\right]$ 

#### **ORDINARY GENERAL annuity**

$$\mathsf{FV}_{\mathsf{g}} = \mathsf{PMT}\left[\frac{(1+p)^{\mathsf{n}}-1}{p}\right] \qquad \qquad \mathsf{PV}_{\mathsf{g}} = \mathsf{PMT}\left[\frac{1-(1+p)^{\mathsf{n}}}{p}\right]$$

\*\*\*First, you must calculate p (equivalent rate of interest per payment period) using  $p = (1+i)^c - 1$ where *i* is the periodic rate of interest and **c** is the number of interest conversion periods per payment interval.

$$c = \frac{\# of interest conversion periods per year}{\# of payment periods per year}$$
$$c = \frac{C/Y}{P/Y}$$

#### **CONSTANT GROWTH annuity**

size of *n*th payment = PMT  $(1+k)^{n-1}$ 

k = constant rate of growth

PMT = amount of payment

n = number of payments

sum of periodic constant growth payments = PMT  $\left[\frac{(1+k)^n-1}{k}\right]$ 

 $\mathsf{FV} = \mathsf{PMT}\left[\frac{(1+i)^n - (1+k)^n}{i-k}\right]$ 

 $\left[\frac{(1+i)^n-(1+k)^n}{i-k}\right]$  is the **compounding factor** for constant – growth annuities.

$$\mathsf{PV} = \mathsf{PMT}\left[\frac{1-(1+k)^n(1+i)^{-n}}{i-k}\right]$$

 $\left[\frac{1-(1+k)^n(1+i)^{-n}}{i-k}\right]$  is the **discount factor** for constant – growth annuities.

 $PV = n (PMT)(1 + i)^{-1}$  [This formula is used when the constant growth rate and the periodic interest rate are the same.]

#### **SIMPLE annuity DUE**

$$FV_{n}(due) = PMT\left[\frac{(1+i)^{n}-1}{i}\right](1+i)$$
$$PV_{n}(due) = PMT\left[\frac{1-(1+i)^{-n}}{i}\right](1+i)$$

#### **GENERAL annuity DUE**

$$FV_{g} = PMT \left[\frac{(1+p)^{n}-1}{p}\right] (1+i)$$
$$PV_{g} = PMT \left[\frac{1-(1+p)^{-n}}{p}\right] (1+i)$$

\*\*\*Note that you must first calculate p (equivalent rate of interest per payment period) using  $p = (1+i)^c - 1$  where *i* is the periodic rate of interest and **c** is the number of interest conversion periods per payment interval.

#### ORDINARY DEFERRED ANNUITIES or DEFERRED ANNUITIES DUE:

Use the same formulas as ordinary annuities (simple or general) OR annuities due (simple or general). Adjust for the **period of deferment** – period between "now" and the starting point of the term of the annuity.

#### **ORDINARY SIMPLE PERPETUITY**

$$\mathsf{PV} = \frac{PMT}{i}$$

#### **ORDINARY GENERAL PERPETUITY**

$$PV = \frac{PMT}{p}$$
 where  $p = (1+i)^c - 1$ 

## SIMPLE PERPETUITY DUE

PV (due) = PMT +  $\frac{PMT}{i}$ 

## **GENERAL PERPETUITY DUE**

PV (due) = PMT +  $\frac{PMT}{p}$  where  $p = (1+i)^{c}-1$ 

## **AMORTIZATION involving SIMPLE ANNUITIES:**

**Amortization** refers to the method of repaying both the principal and the interest by a series of equal payments made at equal intervals of time.

If the payment interval and the interest conversion period are *equal* in length, the problem involves working with a simple annuity. Most often the payments are made at the *end* of a payment interval meaning that we are working with an *ordinary simple annuity*.

The following formulas apply:

$$\mathsf{PV}_{\mathsf{n}} = \mathsf{PMT}\left[\frac{1 - (1 + i)^{-\mathsf{n}}}{i}\right] \qquad \qquad \mathsf{FV}_{\mathsf{n}} = \mathsf{PMT}\left[\frac{(1 + i)^{\mathsf{n}} - 1}{i}\right]$$

## Finding the outstanding principal balance using the retrospective method:

## Outstanding balance = FV of the original debt – FV of the payments made

Use  $FV = PV (1 + i)^n$  to calculate the FV of the original debt.

Use  $FV_n = PMT\left[\frac{(1+i)^n-1}{i}\right]$  to calculate the FV of the payments made