SIMPLE INTEREST

$I=$ Prt

- I is the amount of interest earned
- $\quad P$ is the principal sum of money earning the interest
- r is the simple annual (or nominal) interest rate (usually expressed as a percentage)
- $\quad t$ is the interest period in years
$S=P+I$
$S=P(1+r t)$
- $\quad S$ is the future value (or maturity value). It is equal to the principal plus the interest earned.

COMPOUND INTEREST

$\mathrm{FV}=\mathrm{PV}(1+i)^{\mathrm{n}}$
$\mathbf{i}=\frac{\mathbf{j}}{\mathbf{m}} \quad \mathbf{j}=$ nominal annual rate of interest
$\mathrm{m}=$ number of compounding periods
$\mathrm{i}=$ periodic rate of interest
$P V=F V(1+i)^{-n} \quad O R \quad P V=\frac{F V}{(1+i) n}$

ANNUITIES

Classifying rationale	Type of annuity		
Length of conversion period relative to the payment period	Simple annuity - when the interest compounding period is the same as the payment period $(\mathrm{C} / \mathrm{Y}=\mathrm{P} / \mathrm{Y})$. For example, a car loan for which interest is compounded monthly and payments are made monthly.	General annuity - when the interest compounding period does NOT equal the payment period (C/Y f P/Y). For example, a mortgage for which interest is compounded semi-annually but payments are made monthly.	
Date of payment	Ordinary annuity - payments are made at the END of each payment period. For example, OSAP loan payment.	Annuity due - payments are made at the BEGINNING of each payment period. For example, lease rental payments on real estate.	
Payment schedule	Deferred annuity - first payment is delayed for a period of time.	Perpetuity - an annuity for which payments continue forever. (Note: payment amount speriodic interest earned)	

Beginning date and end date	Annuity certain - an annuity with a fixed term; both the beginning date and end date are known. For example, installment payments on a loan.	Contingent annuity - the beginning date, the ending date, or both are unknown. For example, pension payments.

ORDINARY SIMPLE annuity

$\mathrm{FV}_{\mathrm{n}}=\mathrm{PMT}\left[\frac{(1+i)^{\mathrm{n}}-1}{i}\right]$
Note: $\left[\frac{(1+i)^{\mathrm{n}}-1}{i}\right]$ is called the compounding or accumulation factor for annuities (or the accumulated value of one dollar per period).
$\mathrm{PV}_{\mathrm{n}}=\mathrm{PMT}\left[\frac{1-(1+i)^{-\mathrm{n}}}{i}\right]$

ORDINARY GENERAL annuity

$$
\mathrm{FV}_{\mathrm{g}}=\mathrm{PMT}\left[\frac{(1+p)^{\mathrm{n}}-1}{p}\right] \quad \mathrm{PV}_{\mathrm{g}}=\mathrm{PMT}\left[\frac{1-(1+p)^{-\mathrm{n}}}{p}\right]
$$

***First, you must calculate \boldsymbol{p} (equivalent rate of interest per payment period) using $p=(\mathbf{1 + i})^{\mathbf{c}} \mathbf{- 1}$ where \boldsymbol{i} is the periodic rate of interest and \mathbf{c} is the number of interest conversion periods per payment interval.
$c=\frac{\# \text { of interest conversion periods per year }}{\# \text { of payment periods per year }}$
$\mathrm{c}=\frac{\mathrm{C} / \mathrm{Y}}{\mathrm{P} / \mathrm{Y}}$

CONSTANT GROWTH annuity

size of nth payment $=P M T(1+k)^{n-1}$
$\mathrm{k}=$ constant rate of growth
PMT = amount of payment
$\mathrm{n}=$ number of payments
sum of periodic constant growth payments $=$ PMT $\left[\frac{(1+k)^{\mathrm{n}}-\mathbf{1}}{k}\right]$
$\mathrm{FV}=\mathrm{PMT}\left[\frac{(1+i)^{\mathrm{n}}-(1+k)^{\mathrm{n}}}{i-k}\right]$
$\left[\frac{(1+i)^{\mathrm{n}}-(1+k)^{\mathrm{n}}}{i-k}\right]$ is the compounding factor for constant - growth annuities.
$\mathrm{PV}=\mathrm{PMT}\left[\frac{1-(1+k)^{\mathrm{n}}(1+i)^{-\mathrm{n}}}{i-k}\right]$
$\left[\frac{1-(1+k)^{\mathrm{n}}(1+i)^{-\mathrm{n}}}{i-k}\right]$ is the discount factor for constant - growth annuities.
$\mathbf{P V}=\mathbf{n}(\mathrm{PMT})(\mathbf{1}+\mathrm{i})^{-1}$ [This formula is used when the constant growth rate and the periodic interest rate are the same.]

SIMPLE annuity DUE

$\mathrm{FV}_{\mathrm{n}}($ due $)=\operatorname{PMT}\left[\frac{(1+i)^{\mathrm{n}}-1}{i}\right](1+i)$
$\mathrm{PV}_{\mathrm{n}}($ due $)=\mathrm{PMT}\left[\frac{1-(1+i)^{-\mathrm{n}}}{i}\right](1+i)$

GENERAL annuity DUE

$\mathrm{FV}_{\mathrm{g}}=\mathrm{PMT}\left[\frac{(1+p)^{\mathrm{n}}-1}{p}\right](1+i)$
$\mathrm{PV}_{\mathrm{g}}=\mathrm{PMT}\left[\frac{1-(1+p)^{-\mathrm{n}}}{p}\right](1+i)$
***Note that you must first calculate \boldsymbol{p} (equivalent rate of interest per payment period) using $p=(1+i)^{c}-1$ where \boldsymbol{i} is the periodic rate of interest and \mathbf{c} is the number of interest conversion periods per payment interval.

ORDINARY DEFERRED ANNUITIES or DEFERRED ANNUITIES DUE:

Use the same formulas as ordinary annuities (simple or general) OR annuities due (simple or general). Adjust for the period of deferment - period between "now" and the starting point of the term of the annuity.

ORDINARY SIMPLE PERPETUITY

$\mathrm{PV}=\frac{P M T}{i}$

ORDINARY GENERAL PERPETUITY

$\mathrm{PV}=\frac{P M T}{p} \quad$ where $p=(1+i)^{\mathrm{c}}-1$

SIMPLE PERPETUITY DUE

$\mathrm{PV}($ due $)=\mathrm{PMT}+\frac{P M T}{i}$

GENERAL PERPETUITY DUE

$\mathrm{PV}(\mathrm{due})=\mathrm{PMT}+\frac{P M T}{p} \quad$ where $p=(1+i)^{\mathrm{c}}-1$

AMORTIZATION involving SIMPLE ANNUITIES:

Amortization refers to the method of repaying both the principal and the interest by a series of equal payments made at equal intervals of time.

If the payment interval and the interest conversion period are equal in length, the problem involves working with a simple annuity. Most often the payments are made at the end of a payment interval meaning that we are working with an ordinary simple annuity.

The following formulas apply:

$$
\mathrm{PV}_{\mathrm{n}}=\mathrm{PMT}\left[\frac{1-(1+i)^{-\mathrm{n}}}{i}\right] \quad \mathrm{FV}=\mathrm{PMT}\left[\frac{(1+i)^{\mathrm{n}}-1}{i}\right]
$$

Finding the outstanding principal balance using the retrospective method:

Outstanding balance $=$ FV of the original debt - FV of the payments made

Use FV = PV $(1+i)^{n}$ to calculate the FV of the original debt.
Use $\mathrm{FV} \mathrm{V}_{\mathrm{n}}=\mathrm{PMT}\left[\frac{(1+i)^{\mathrm{n}}-1}{i}\right]$ to calculate the FV of the payments made

